
Mitigating Stragglers in the Decentralized Training on
Heterogeneous Clusters

Donglin Yang

University of North Carolina at

Charlotte

Charlotte, NC, USA

dyang33@uncc.edu

Wei Rang

University of North Carolina at

Charlotte

Charlotte, NC, USA

wrang@uncc.edu

Dazhao Cheng

University of North Carolina at

Charlotte

Charlotte, NC, USA

Dazhao.Cheng@uncc.edu

ABSTRACT
Decentralized algorithms, e.g., AllReduce, have been widely applied

as the synchronization strategy for data-parallel distributed deep

learning due to its superior performance over centralized ones. The

synchronous Stochastic Gradient Descent (SGD) approach guaran-

tees accuracy for various deep learning models, but its performance

suers from stragglers, i.e., "long-tail eects." The straggler can be

caused by the inherent load imbalance from workloads or system

heterogeneity. Despite existing optimizations to support central-

ized algorithms against stragglers, little eort has been explored in

decentralized training algorithms.

This paper proposes a Randomized Non-blocking AllReduce

(RNA) protocol to mitigate the straggler problem. To avoid "long-

tail eects" brought by the strict barrier in the AllReduce, we pro-

pose a decentralized, relaxed, and randomized sampling approach

to implement partial AllReduce operation. To handle heterogeneity

at a large scale, we combine the traditional Parameter Servers (PS)

with AllReduce to implement a hierarchical synchronization mech-

anism. We theoretically demonstrate the convergence analysis and

detail the system implementation. The experiment results on rep-

resentative deep learning models show nearly 1.8× speedup over

the state-of-the-art Horovod and 1.3× speedup over AD-PSGD on

a heterogeneous cluster.
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1 INTRODUCTION
Deep learning (DL) [32] has achieved great success in various do-

mains such as image classication [54], natural language process-

ing [10], object detection [55], speech recognition [24], etc. Ob-

taining accurate deep learning models is a computation-intensive

process, which requires large amounts of data and substantial com-

puting capacity. There is a trend to distribute the training process

across clusters to accelerate the training process. Distributed train-

ing is an iterative process, which adopts the most popular algo-

rithm called mini-batch Stochastic Gradient Descent (SGD) [14]

to compute gradients and update models until convergence. Data

parallelism [34][13][12] is one of the most popular approaches to

distributing the training process. In this strategy, dierent machines

in a distributed environment have a complete copy of themodel. The

procedure of distributed training is bottlenecked by the parameters

communication. In a cluster environment, two typical approaches

are widely used to synchronize model parameters at the end of

each iteration: centralized [34] and decentralized algorithms [36].

For the centralized approach, nodes are divided into two categories:

Parameter Servers (PS) and workers. PS stores the model parame-

ters while workers execute the training process in each iteration.

In the decentralized approach, every worker performs the compu-

tation and maintains a copy of the parameters. Recently it has been

theoretically proven that decentralized approaches can outperform

centralized ones [36].

In a distributed fashion, the main performance bottleneck comes

from the communication hotspot, which is caused by the frequent

access to global models. At the end of each iteration, gradients

or parameters are frequently transferred among workers until the

model parameters are fully updated. In PS, all nodes have to commu-

nicate with central servers, leading to a communication bottleneck.

It is reported that more than 90% of iteration time is required for

communication for a wide and deep neural network model, e.g.,

VGG16 [5]. This problem has been alleviated with decentralized

algorithms, which implement all-to-all communication logically.

This bandwidth-optimal communication protocol has been shown

to outperform centralized approaches, especially for neural net-

works with large models. Moreover, decentralized algorithms can

achieve better scalability, which is independent of the number of

workers. In this paper, we focus on one of the most popular im-

plementations of decentralized algorithms, Ring AllReduce [49].

The execution of AllReduce follows the Bulk Synchronous Paral-

lel (BSP) model. In it, parallel processes execute the same task at

the same iteration, and the generated updates must be synchro-

nized on parameters when all tasks are nished. The strict global

barrier at each iteration ensures the model accuracy but makes it
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vulnerable to "long-tail eects." All processes have to wait for each

other to complete the propagation before the AllReduce operation

is triggered. The slowest worker bounds the performance. Recently,

though many studies have been proposed to overcome straggles

in the centralized fashion [5][6][6][61], it falls short in supporting

decentralized approaches.

In this paper, we investigate the causes of straggler in terms

of computation. Firstly, the straggler can be caused by the inher-

ent load imbalance. A dynamic neural network such as LSTM [18]

and RNN [51] model sequences of data (e.g., video and sentences).

The computation graph topology depends on input values, whose

data samples could have variable shapes. For example, the recur-

rent structure of the network leads to that the training overhead

is proportional to the length of the input video [65]. Also, the

sentences in the training dataset for a language model [57] have

various input lengths, resulting in an unbalanced workload across

dierent batches. We observe that varying input lengths result

in computation load imbalance, leading to the ineciency during

the synchronization phase. Secondly, the heterogeneity from the

system itself can also cause "long-tail eects." Shared clusters and

clouds often exhibit signicant hardware and performance hetero-

geneity due to multi-tenant interference and continuous machine

maintenance [40][6].

Several pieces of research have explored the robustness of deep

learning processes [37][39]. In particular, AD-PSGD [37] is the

rst that proposes to use randomized communication to reduce

the eects of stragglers probabilistically. In contrast to waiting

for all processes, each worker randomly selects one worker to

average parameters between the two. However, this design incurs

signicant synchronization overhead to ensure atomicity. It also

requires manual eorts to avoid scheduling conicts[39]. Inspired

by the fact that deep learning training process is robust to bounded

errors, we propose to relax the global barrier without changing

the communication graph to mitigate the impact from "long-tail

eects." We oer a new solution, called Randomized Non-blocking

AllReduce, that allows the AllReduce operations to proceed the

synchronization without waiting for the completion of all processes’

computation.

The challenge of partial AllReduce lies in when and how to termi-

nate input data processing. For instance, each process is unaware of

the progress of others in the existing computing platforms. The im-

plementation of Horovod requires when all of the processes inform

gradients’ readiness, and then the synchronization is executed. In a

global view, the critical challenge to achieve a partial AllReduce is

deciding the time to trigger the sync, i.e., determining the number

of processes contributing to their updates. It is a trade-o between

system eciency and algorithm eciency. To tackle this challenge,

we adapt the power of two choices load balancing technique [42] to

partial schedule synchronization by probing two random processes

and determining the synchronization time based on the faster one.

In a local view, we use two individual threads to execute computa-

tion and communication, through which cross-iteration training is

enabled. In a heterogeneous cluster, the deterministic performance

dierence between machines can not be neglected. To utilize the

exibility of the traditional PS to achieve asynchronous updates,

we combine PS with AllReduce architecture to implement a hierar-

chical synchronization protocol. The convergence analysis shows

that the error is bounded and the statistical properties guarantee

the convergence of deep neural network models. In a nutshell, we

make the following technical contributions:

• We empirically study and demonstrate the eects of inherent

workload imbalance and system heterogeneity. Based on

the observations, we motivate the need for Non-Blocking

AllReduce to relax the global synchronization barrier.

• We present a randomized sampling approach to deploy Non-

Blocking AllReduce and detail the workow to update param-

eter models using this strategy. Furthermore, we combine

the traditional PS with AllReduce to implement hierarchical

synchronization in heterogeneous clusters.

• We present the theoretical proof of convergence of asyn-

chronous decentralized training and detail the system im-

plementation to enable cross-iteration for Tensorow using

RNA.

• We implement RNA to perform comprehensive evaluations

with various network models. It achieves nearly up to 1.8×

speedup compared with existing state-of-the-art implemen-

tations.

The rest of this paper is organized as follows. Section 2 gives

background and motivations on Non-Blocking AllReduce for dis-

tributed deep learning training. Section 3 describes the core design

of RNA, and section 4 extends RNA into a large and heterogeneous

cluster. Section 5 and 6 detail the convergence analysis and system

implementation. Section 7 presents the experimental methodol-

ogy, and Section 8 reports the evaluation results. Section 9 reviews

related work. Section 10 concludes the paper.

2 BACKGROUND AND MOTIVATION
2.1 Distributed Deep Learning
In the training stage of deep learning, Stochastic Gradient Descent

(SGD) [47] is adopted to minimize the loss function f (x ) over a
data set S. In each iteration, parameters x are updated by x ← x -

γ · Ox f (x ; ξ ), where γ represents learning rate, and ξ represents

a mini-batch of randomly sampled data from S. With the growing

volume of data, it is popular to parallelize the training process in a

distributed environment. Multiple parallelism schemes have been

proposed recently to distribute the training process: data paral-

lelism [49][34], model parallelism [9], hybrid parallelism [29][58]

and pipeline parallelism [27][43]. Among them, data parallelism

is the easiest one to be implemented without signicant statistical

eciency loss compared with other approaches. Therefore, many

popular deep learning frameworks such as TensorFlow [1], Py-

Torch [45] and MXNet [7] support this approach. Our paper focus

on the data parallelism model.

For the data parallelismmodel, each node processes the randomly

sampled input data independently and obtains gradients using the

backpropagation algorithm [33]. At the end of each iteration, the

obtained gradients from each node need to be gathered around so

as to update the global parameter during the synchronization phase.

The updated model will be applied in the next iteration and the

distributed training process keeps this procedure until the model

convergences. Synchronization is an essential part of parallelizing

the training process and plays a critical role in achieving better

scalability in a heterogeneous environment.
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2.2 Existing Synchronization Approaches
Parameter Servers (PS) is a well-known scheme for parallel SGD ex-

ecution, which is also called as the centralized algorithm. Parameter

Servers and multiple workers are launched in this typical setting.

At each iteration, each independent worker obtains gradients based

on the SGD and sends the data to the central PS. The central PS

will send back the updated model to each work and continue the

training process. However, this simple approach has a signicant

drawback because all the workers have to push/pull parameters

from the centralized servers, leading to the communication hotspot.

The communication hotspot limits the system scalability. Decen-

tralized training is proposed to alleviate this issue.

Algorithm 1 The decentralized training process.

Require: A set of workers M; the communication topology G.
1: for workermi ∈ M do
2: compute the gradient дk,i = Oεk,i f (xk,i ; ξk,i )
3: average gradients using AllReduce дk ←

∑
i ∈Mдk,i

4: update parameters xk+1,i ← xk,i - γk · дk
5: end for

As shown in Algorithm 1, in a decentralized setting, there are no

central parameter servers. Every worker in this scheme maintains a

complete copy of the model parameters. At the end of an iteration,

each node sends the obtained gradients to their out-going neighbors

according to the communication topology, after which it applies

the obtained gradients to the parameter. Ring All-Reduce [49] is

one of the most popular implementation, which works in a scatter-

and-gather way. In this setting, each worker only communicates

with its neighboring sender and receiver in a xed order during the

synchronization phase, forming a logical ring. For a distributed sys-

tem with N servers, in each step, the worker sends one portion of

1

N gradients to its left neighbor and meanwhile, it accepts another

1

N gradients from its right neighbor. It then averages the accepted

gradients with its local portion, which is called as Reduce opera-
tions. The averaged portion will be transferred to its left neighbor

in the next step during the scatter operations, and meanwhile this

worker will accept another averaged part from its right neighbor.

After N − 1 steps, scatter operations are nished, and every worker

owns a complete
1

N of gradients. Gather operations will be trig-

gered then, which works similarly, but it does not require Reduce
operation. In each step, each worker replaces its local portion of

gradients with the accepted one from its right neighbor. After N −1
steps, each worker obtains the whole set of global gradients. It

benets from contention-free communication compared with PS

strategy by abandoning the many-to-one communication protocol,

which achieves the ideal parallelism within the theoretical upper

bound. These procedures guarantee consistent convergence with

the expense of introducing a blocking barrier. Workers will always

have to wait for the slowest one to nish at each iteration. This

means that this distinct communication pattern can only achieve

its best performance in a homogeneous environment. This is a

strict requirement, especially in a shared cloud environment.

To tolerate system heterogeneity, AD-PSGD [37] proposes a

random synchronization mechanism to enable the point-to-point

communication. Instead of synchronizing with the xed neighbors
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Figure 1: Training time breakdown with dierent system
congurations.

specied by the communication topology, a worker performs an

atomic model averaging with the randomly selected neighbor, re-

gardless of whether they are in the same iteration or not. Even

though the slow workers inevitably have staler parameters, the

eects on the training of the global model can be minimized via

the probabilistic solution. However, this strategy requires addi-

tional system overhead and manual eorts to generate a dynamic

communication graph [39].

2.3 Challenges and Motivation
2.3.1 Case Study. In a shared cluster, major bottlenecks for dis-

tributed deep learning training comes from the straggler problem,

which is caused by various heterogeneities. In general, determin-

istic heterogeneity is relatively common because a large cluster is

always congured with dierent hardware and dynamic capacities.

Moreover, DL workloads running in a shared cluster always coexist

with other data analytic workloads, which introduces transient

slowdowns. The over-subscription of workloads in a cluster further

harms the performance of DL training. To motivate our work, we

build a toy cluster composing of three NVIDIA GeForce RTX 2080

Ti GPU on three nodes. One node 2 and 3 we inject 10ms and 40ms

showdown, respectively. The machines are connected with 10Gb

Ethernet. We run ResNet-56 [23] and VGG-16 [50] with the CIFAR-

10 dataset [30]. We divide the time a worker spends in one training

iteration into two parts: (i) the computation time, to carry out the

forward propagation to produce output and backward propagation

to obtain gradients; and (ii) the waiting time, including the time for

exchanging gradients/parameters with the PS and the blocked time

due to synchronization barrier (i.e., the time when the worker is not

doing computation nor communication). From Figure 1, thoughw1

can complete one iteration faster than other machines, e.g., nearly

2× faster in terms of computation, it has to wait for the slower ma-

chines to nish the propagation and then synchronize the obtained

gradients with other nodes. This strict requirement for AllReduce
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Figure 2: Inherent load imbalance from training LSTM on
UCF101.

operation degrades the system eciency, slowing down the train-

ing progress. System heterogeneity is common, especially in the

cloud environment. The straggler issue will be more severe on a

large scale.

Load imbalance from the application also widely exists in the

training of deep learning models. We use Inception V3 [53] to ex-

tract video features for UCF101 [52], which has 13,320 videos. Fig-

ure 2(a) summarizes the distribution of the length of video frames.

The lengths of video range from 29 to 1776, with a mean value of

186 and a standard deviation of 97.7. We run a Long Short-Term

Memory (LSTM) [26] model to demonstrate our observation. We

congure the batch size as 32 and train the model on the GPUs

with the same capability. Figures 2(b) illustrates the training time

distribution over the 2,000 sampled batches in two epochs to train a

2,048-wide single-layer LSTM model on video frame features. Due

to the network’s recurrent structure, the computational overhead

is proportional to the number of frames in the input video. The

training time is distributed from 156 ms to 8000 ms, with a mean

runtime of 1,219 ms and a standard deviation of 760 ms. These

statistics above show that training an LSTM model for video clas-

sication exhibits an inherent load imbalance. Load imbalance is

common, especially for dynamic neural networks [64]. Since se-

quences may have variable length, the cell function is executed for

a dierent number of times for dierent sequences. In dynamic

neural networks, some dependencies depend on input data or pa-

rameter values, which is dynamically determined, resulting in the

runtime imbalance.

2.3.2 Non-Blocking Reduce Synchronization. The decentralized

training follows the Bulk Synchronous Parallel (BSP) model, in

which workers synchronize at the end of an iteration, i.e., barrier

and proceed after the model parameters have been fully updated by

all workers. However, from the above observations, we can learn

g1 g2
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Time
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AllReduce
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(a) default AllReduce.
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Figure 3: д1 and д2 represent gradients from iteration t1 and
t2, respectively. The length of the bars represents the train-
ing time. Worker C is specied as the initiator.

that this synchronous execution lowers hardware eciency since

fast workers have to wait for stragglers to complete each iteration,

wasting computing cycles, which can be illustrated in Figure 3(a).

Bounded staleness [25] is an important technique to tolerate the

temporary slowdown for centralized algorithms, allowing faster

workers to advance to the next iteration within the bounded stale-

ness. It is easy to implement asynchronous synchronization in a cen-

tralized scheme because eachworker communicates with parameter

servers directly and computes gradients independently. However,

the distinct communication pattern of the Ring All-Reduce protocol

makes it dicult to enforce such a technique directly. Because cur-

rent implementations require that all the results should be within

the same iteration to ensure consistency.

These observations motivate us to propose a Non-Blocking-

Reduce mechanism to synchronize partial results without changing

the communication graph. Inspired by the fact that the training

process is robust concerning bounded errors, we propose to update

the gradients without waiting for slower processes to reduce the

delay. Instead of waiting for the slower nodes, the faster worker

will Reduce the gradients partially from available workers. Figure 3

shows a simple example in a decentralized setting with three work-

ers. Worker A, B, and C are at the iteration t1 in the beginning.

In default, when worker A completes the propagation, since the

worker B and C are still in progress, it has to wait for the comple-

tion of the other two processes. It is until the slowest process, i.e.,

B, nishes the propagation, then the AllReduce is executed. The

default strategy under-utilizes the resource because faster processes

keep idle when waiting for slower processes. In a non-blocking set-

ting, an initiator is randomly selected among these three processes.

Suppose that C is selected. When process C nish propagation, the

AllReduce operation is enforced, then worker A andC can advance
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to a new iteration. During the synchronization phase, worker B

contributes a Null value to maintain the communication graph. In

this way, the waiting time for A is reduced while there is no idle

time forC . The overall system eciency is improved compared with

the default strategy. In the next iteration t2, if both worker A, B and

C have available results, the AllReduce operation will synchronize

the gradient д1 from worker B with д2 from workerA andC though

they are in dierent versions. Through the Non-Blocking-Reduce

mechanism, the strict blocking barrier can be relaxed, which can

reduce the impact of stragglers. In a cluster with P processes, the

probability that any process is specied as the initiator is equal to

1

P , correspondingly on average, 50% of processes join the collective

operation. In this way, the asynchronous synchronization might

lower statistical eciency than the synchronous implementation

but it can trade statistical eciency for system eciency. However,

the above example is too simple and straightforward with only two

workers. In the following sections, we will discuss how to extend

the Non-Blocking-Reduce mechanism to a cluster-wide scale and

heterogeneous environments.

3 RANDOMIZED NON-BLOCKING
ALLREDUCE

Traditional synchronous operations in the decentralized training

such as AllReduce require a central scheduler to maintain a com-

plete view of all processes. The synchronization operations can

only be initiated after the slowest process nishes its computation.

In this section, we introduce Randomized Non-blocking AllReduce

(RNA), which takes a radically dierent approach: all processes

operate in parallel, and the central scheduler does not maintain any

progress state about training. The central scheduler relies on instan-

taneous progress information acquired from worker machines to

initiate a synchronization. When the synchronization is triggered,

RNA adopts weighted averaging to local accumulated results and

dynamic scaling to the global aggregation to apply the obtained

gradients.

3.1 Randomized Partial Collectives
The key to avoiding the "long-tail eects" for Ring AllReduce en-

force partial collective operations, which force the slow processes

to execute the synchronization. The main dierence between the

bulk synchronous parallel collective communication and the par-

tial collective communication is when synchronization is triggered.

For bulk synchronous parallel, the AllReduce is executed when

all workers inform the central scheduler that they are ready to

reduce the obtained gradients, e.g., NEGOTIATE_ALLREDUCE in

Horovod. In this scenario, even a single delayed process aects

the job’s training time. In contrast to the synchronous mode, in

MPI, there is a wait-free operation, which is called partial collective

communication [16]. It forces the slow processes to execute the

collective communication as soon as there is one process executing

it. This process, called the initiator, is in charge of enforcing the

others to join the collective communication. In partial collective

communication, an external activation is allowed to enforce a pro-

cess to execute the synchronization before it reaches the internal
activation. The time when the synchronization should be initiated

is a trade-o between system and algorithm eciency. A simple

and straightforward strategy is to select an initiator among pro-

cesses randomly. When a process is elected as the initiator, if it has

gradients ready to be reduced, an external activation is broadcast

to all the other processes to join the collective operation, regardless

of they have nished the propagation or not.

Ideally, random selection can guarantee that at least half of the

processes on average can take part in the collective operation and

contribute their gradients. For a cluster with N nodes, the probabil-

ity that any process is selected as the synchronization initiator is

1

N . Correspondingly, half of the processes on average have gradi-

ents ready for AllReduce before the selected initiator sends out the

external activation. However, for a workload with a long tail distri-

bution, e.g., as is illustrated in section 2.3.1, stragglers still have a

high probability of slowing down the synchronization. Specically,

the expected waiting time is
1

1−ρ , when there is workload in the

queueing system [11], in which ρ represents the computational

load.

3.2 Per-process Sampling
Inspired by the power of two choices load balancing techniques [42],

RNA implements a power of two choices technique to improve

the purely random selection of initiator of AllReduce. It provides

low expected waiting time using a stateless, randomized approach.

More precisely, For a xed timeT , using q choices, i.e., two here, the
waiting time in an initially empty system over T is upper bounded

by

∑∞
i=1 ρ

qi −q
q−1 − O (1), which improves the expected waiting time

exponentially compared to the random strategy. The term O (1) is
obtained in an initially empty system over the rst T units, which

may depend on T . The central scheduler randomly selects two

processes among the machines and sends a probe to each, where a

probe is a lightweight RPC. The selected processes can only reply

to the probe when they have ready gradients. As long as one of

them responds to the central scheduler, the AllReduce operation

is initiated. The probe is attached to the iteration identication

to avoid the scheduling conict. When the faster one is replied,

another probe is expired. For example, if processes pi and pj are
selected and nish propagation for the current iteration at the same

time, they both reply to the probe. There are two cases: 1) response

from pi has been accepted, the probe for this iteration for pj is
expired; 2) no response has been accepted, faster pi is accepted
and, the probe identication is updated to the next iteration. Two-

probe sampling can reduce the response time eectively compared

with randomized approach. An additional number of probes cannot

improve the performance but harm the performance because of the

system overhead from sampling and messaging, which is detailed

in Section 8.4.

3.3 Non-blocking AllReduce
The straightforward implementation of Ring AllReduce incurs high

ineciency when stragglers appear. The goal of RNA is to propose

a communication primitive that can balance the eciency between

the system and algorithm.When the collective operation is initiated,

the synchronization procedure involves updating the weights of

contribution from each process. We usewk,i = 1 to indicate that the

processk at iteration i has gradients to be applied, otherwise,wk,i =
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Algorithm 2 Non-blocking AllReduce.

Require: A set of workers M; the communication topology G.
1: for workermi ∈ M do
2: compute the gradient дk,i = Oεk,i f (xk,i ; ξk,i )

3: obtain the weight for gradientsW = 1∑
wk,i

4: average gradients using Non-blocking AllReduce дk ←
W ·
∑
i ∈Mдk,i

5: update parameters xk+1,i ← xk,i - γk · дk
6: end for

0. Then the weight for each process isW = 1∑
wk,i

. Algorithm 2

illustrates the procedure of RNA. Specically, according to the

Linear Scaling Rule [21], RNA dynamically adjusts learning rate

γk =
∑
wk,i ·γ at each iteration. All other hyper-parameters (weight

decay,etc.) are kept unchanged. The implementation of RNA can

still leverage the benet from Ring AllReduce that it can update the

weights among processes in O (M ) time because it does not change

the communication graph. RNA still follows the generalization of

the conventional Ring AllReduce in deep learning training among

all processes.

Figure 4 summarizes the working examples of RNA. RNA em-

ploys two threads to execute computation and communication. In

our implementation, computation is done by GPU, while gradients

synchronization is by CPU, i.e., MPI. In these examples, we assume

that the processw0 is always selected as the initiator. At iteration t ,
suppose thatw1 is slower thanw0 andw1 has no available gradients

whenw0 completes propagation.w1 initiates the AllReduce without

waiting forw1. Sincew1 contributes a дnull gradient at this time,

RNA adjusts the weightW and updates parameters correspondingly.

At iteration t + 1, whenw0 triggers AllReduce operation sincew1

catches up withw0 and has two gradients дt+1,1 and дt+2,1 avail-
able on the communication thread, the accumulated gradients are

locally reduced and participate in the collective operations then. We

should notice that дt+2,1 is updated using the new parameters xt+1
while the gradients дt+1 uses stale parameter xt . At iteration t + 2,
w1 is faster than the initiator. It does not wait for the completion of

w0 and continue the next iteration. When the initiatorw0 is ready,

then AllReduce is performed to update the parameters using д0t+2
and д1t+2.

While in some extreme situations, the staleness might be more

than two. RNA implements a weighted averaging to reduce the

Central PS

mi mkmj… …

mo mnmm… …

push
pull

push
pull

Figure 5: Hierarchical synchronization scheme: mi repre-
sents the i-th worker.

accumulated locally. For work i at iteration k , the locally reduced

gradient is д′ =
∑
[t−(k−τ )+1]·дt∑
[t−(k−τ )+1] , in which дt is the gradients ob-

tained at iteration t and τ is the largest iteration gap among accu-

mulated results. The weight of an update is linearly associated with

its iteration. If some slower processes fall behind others severely,

RNA follows the design of bounded staleness [25] to overwrite the

stale data and only keep results within the bound.

4 HIERARCHICAL SYNCHRONIZATION IN
HETEROGENEOUS CLUSTER

The objective of RNA is to leverage the randomized initiator to

avoid the "long-tail eects." However, when this implementation

is extended to a large and heterogeneous environment, the deter-

ministic heterogeneity from hardware cannot be negligible. The

mechanisms proposed so far are mainly eective in a homogeneous

execution environment but do not help with slowdown situations.

Slow workers who always fall behind others can enlarge the iter-

ation gaps among workers gradually, resulting in lower accuracy.

The best solution is to allow asynchronous synchronization. To

achieve that, we combine the decentralized design with the tra-

ditional PS implementation, which can be illustrated in Figure 5.

The hierarchical AllReduce rst groupsM machines into N groups,

and uses three phases to do update parameters: rstly, each group

executes AllReduce operation and updates parameter among the

assigned machines in this group following the basic design of RNA.

This procedure follows the basic randomized Non-blocking AllRe-

duce; secondly, the averaged gradients among each group is applied

to update models using parameter server. The updated parameters

from each group is pushed to a central PS from the selected initia-

tor to be averaged, the results are then pulled back to the initiator

worker; thirdly, the selected initiator in each iteration executes a

broadcast operation within the group to propagate the nal result to

every process. In this mode, each group can be regarded as a "node"

in the traditional PS. In a large scale, it is easy to implement asyn-

chronous synchronization because each group communicates with

parameter servers directly and computes gradients independently.

Whether the hierarchical synchronization should be used or not,

it depends on both the system performance and application be-

haviors. To determine whether to choose one or more AllReduce

groups, we test a simple condition of ζ > υ, where ζ denotes the

dierence of the time between the fastest task and the slowest one,
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Table 1: Notation.

| |x | |c the lc norm of vector x

Eξ (·) the expectation of variable ξ

xk the model parameter at k-th iteration

ξ the sampled data from input

f (·) the target function for optimizing

д(·) the gradient function

τi j the iteration gap between i , j-th machines

L the Lipschitzian constant

σ 2
the bounded variance

K the total number of iterations

B the parameter weights

x∗ the optimal parameters

η staled iteration bound

and υ is the average time of one iteration of all processes. If ζ > υ,
we use a two-group conguration. During the group conguration,

processes are ranked according to the processing time. The pro-

cesses with processing time larger than υ are regarded as a slower

worker. Faster workers are dened in a similar way. Faster and

slower workers are partitioned into two subsets. The partition-and-

group procedures are recursively performed in each subset until ζ
≤ υ is satised inside the group.

It is worth noting that the proposed hierarchical synchronization

is dierent from hierarchical AllReduce [28], which is mathemati-

cally equivalent to All-Reduce among all workers with acceleration

brought by the hierarchical architecture. For RNA, workers end

up with dierent weights after the synchronization for a dierent

group. Compared with the default Ring AllReduce, the deterministic

slowdown is avoided, making each group homogeneous. Compared

with the traditional PS, the number of workers that communicate

with a central server is reduced from M to N , in which M � N .

As a result, the asynchronous synchronization among groups with

varied capacities can mitigate network contention.

5 CONVERGENCE ANALYSIS
We next theoretically analyze the convergence rate of RNA. Im-

portant notation is summarized in Table1. Based on the weighted

average gradients, we make the following assumptions for analysis.

Assumption 1. For widely used stochastic gradient algorithms:

• (Unbiased Gradient):The stochastic gradient д(x ; ξ ) is unbi-
ased: Eξ [д(x ; ξ )] = ∇f (x ).
• (Bounded Variance): The variance of stochastic gradient is
bounded: Eξ ( | |д(x ; ξ ) − ∇f (x ) | |2) ≤ σ 2, ∀x .
• (Lipschitzian Gradient): The gradient function∇f (·) is Lip-
schitzian, that is to say | |∇f (x )−∇f (y) | | ≤ L| |x−y | |, ∀x ,∀y.

Assumption 2. Bounded delay: the delay for updating the gradi-
ent value among all machines is bounded, which means maxτi j ≤ η.

Convergence bound: AllReduce spreads the reduced gradients.
With the Non-Blocking Reduce mechanism, fast machines use the

staled gradient values from slow ones to update its parameters,

while slow machines will utilize gradients from future iterations re-

sults obtained from faster ones. We uniformly represent the mixed-

version gradients for these two conditions as G
(
xk+τk j , ξk+τk j

)
,

where τk j is the iteration gap to the j-th machine. The positive τk j
represents gradients from the fast worker and, the negative one is

from a slow one. Based on two assumptions above, we obtain the

following convergence bound:

Theorem 5.1. The step length sequence {γk }k=1, ...,K in algorithm
satises

K∑
k=1

*
,
γ 2k

*
,

L

2

+ L2Bη

η∑
κ=1

γk+κ+
-
−

γk
2B

+
-
≤ 0. (1)

We have the following convergence rate for the training:

K∑
k=1

γkE‖∇f (xk )‖
2 ≤

2 ( f (x1) − f (x∗))

B

+

K∑
k=1

*.
,
γ 2kL + 2L

2Bγk

k−1∑
j=k−T

γ 2j
+/
-
σ 2. (2)

The convergence rate is bounded, which satises the same convergence
properties as the asynchronous parameter server approach [62].

Independent staleness:With the guarantee of the convergence

bound, we further analyze that the convergence rate is independent

of the staled parameters η after a sucient number of iterations.

We let the step length γk as a constant value, and we can obtain

the corollary:

Theorem 5.2. The delay parameter η is bounded by:

4BL( f (x1) − f (x∗))

σ 2
(η + 1)2 ≤ K . (3)

We set the step length γk to be a constant γ :

γ =

√
f (x1) − f (x∗)

BLKσ 2
. (4)

after substituting the upper bound:

γL + 2L2Bγ 2η ≤
1

2B(η + 1)
+

η

2B(η + 1)2
(5)

=
2η + 1

2B(η + 1)2
=

1

2B

2η + 1

(η + 1)2
(6)

≤
1

2B
(7)

According to theorem 1, we set the step length γk to be a constant
γ . Then we can obtain the following convergence rate:

K∑
k=1

γE‖∇f (xk )‖
2 ≤

2 ( f (x1) − f (x∗))

M
+

K∑
k=1

*.
,
γ 2L + 2L2Mγ

k−1∑
j=k−T

γ 2+/
-
σ 2

(8)

which is equivalent to:

1

K

K∑
k=1

E‖∇f (xk )‖
2 ≤ 4

√
( f (x1) − f (x∗)) Lσ 2

BK
. (9)
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Discussion According to the Theorem 5.2, we can nd that

when theK is large enough,
4BL(f (x1 )−f (x ∗ ))

σ 2
(η+1)2 is greater than

O (η2). Wemake the following conclusion regarding the bound. First,

because we analyze non-convex objectives, for a given sequence of

learning rates, the algorithm will converge to a point of negligible

gradient. Convergence can be achieved by this algorithm asymptot-

ically. Second, The convergence rate can be achieved by O ( 1√
BK

).

The maximum delay and the number of "missing" gradients per it-

eration can be minimized. It can be concluded that the convergence

rate is guaranteed while it requires the additional performance cost

of synchronization with the slower convergence. Since the commu-

nication cost is also independent of nodes according to the analysis

in [36], our optimization techniques can achieve bandwidth-optimal

performance with partial synchronization, which will be further

empirically conrmed by evaluations in Section 8.

6 IMPLEMENTATION DETAILS
RNA is implemented using C++11 and Python on top of Horovod.

We implement the key functionality of partial AllReduce in the

package controller , which serves as the coordinator to initiate

and perform the AllReduce to average gradients among processes.

Controller resides in the root node in the cluster, which serves as

a centralized mechanism to decide the time to execute the decen-

tralized AllReduce. A plugin is developed for TensorFlow to enable

the cross-iteration feature. As for the hierarchical synchronization,

we follow PS-lite [17] to implement asynchronous communication,

which provides exible and high-performance operations such as

zero-copy push and pull .
Controller. We implement partial AllReduce using MPI only

now because RNA separates communication from computation so

as to avoid the resource contention for GPU, removing barriers

from communication. In default, the controller records the count of

received tensors at each iteration. Only if it is equal to the number of

participated processes, then the synchronization is initiated. Then

AllReduce is performed by Open MPI to synchronize the obtained

gradients. RNA selects one process as the initiator based on the ran-

domized algorithm for each iteration.When the initiator has tensors

ready for reduction, the AllReduce is performed by the background

MPI. As for other processes, RNA will sum the gradients locally

if there are multiple available tensors, which are from dierent

iterations. As for stragglers, each process allocates a null gradient,
i.e., null tensor in TensorFlow, as the input by default, whose size

and shapes are exactly identical to each other among processes.

After each AllReduce operation, the input gradients are overwrit-

ten by a null gradient so as to avoid using outdated gradients.

When the AllReduce is completed, RNA returns a callback with the

iterationID via EnqueueTensorAllreduce . The iterationID records

the step of synchronization. Also, the returned output gradients

overwrite the previous results on each worker. Note that all of the

above input and output gradients are cached on the CPU memory.

NCCL [44] can be applied to synchronize gradients among remote

GPUs, which requires additional GPU memory buer among GPUs

to cache input and output gradients individually.

TensorFlow plugin. In default, Horovod wraps TensorFlow

optimizer in DistributedOptimizer, which is an opt-in graph opti-

mization module. It supports altering runtime behavior of graph

execution, such as instrumenting OpKernel implementation, adding

and removing data, or control dependencies of graph nodes. The

TensorFlow plugin goes through the data-ow graph to obtain

gradients before its execution at each iteration. To enable cross-

iteration training, we create two TensorFlow ops. TheWriteOp
caches the obtained gradient on the CPU memory. If there is a null
tensor, it will be replaced by the new input. If there are input tensor

waiting for reduction, it will be accumulated. To avoid being block

by the default allreduce (), a new kernel, i.e., ReadOp, is created. It
rst checks if there is a new output tensor available, according to

the iterationID. If yes, the new gradients are copied into the GPU

memory to replace the local gradients via PCIe. Otherwise, local

gradients are used to t the deep learningmodel. If RNAwith hierar-

chical synchronization, the дet_weiдht () will write the parameters

to CPU buers after apply_дradient () is nished. Then the updated

tensors are pulled back. RNA overrides the set_weiдht () API that
is inherited from Tensorow optimizer to use the averaged gradi-

ents from CPU to continue training. With these two new kernels,

the computation of TensorFlow does not necessarily wait for the

completion of the communication.

Hierarchical synchronization. A parameter server (PS) is a

logically separate device that stores global parameters and provides

a key-value interface to workers. Generally, PS approach has the

following phases: (1) each worker computes the gradients using its

local sampled data and sends them to PS (push); (2) central server

aggregates the gradients across workers and updates its parame-

ters (update); (3) Workers synchronize parameters with PS (pull).

Following the logic of ps-lite, a noti f y_ready value is returned

from the callback by дet_weiдht (). The PS only executes the pa-

rameter summation, i.e., model averaging, which require additional

CPU resources. Fortunately, modern CPU are good at summation

operation due to the highly optimized AVX instructions [38]. The

additional computation on the CPU will not be the bottleneck. Then

PSPushPull () is called to perform a push and pull operation on the

output tensors sequentially. Only the selected initiator serves as

the "node" and triggers the PSPushPull () operation. We applied the

defaultwait () API to lock the variables on each worker. After the

gradients are aggregated and being updated at the central server,

the updated parameters will be pulled back to the initiator. The

pulled back parameters are written to the CPU buer. RNA noties

MPI to broadcast the new tensors among the group via broadcast ()
to overwrite the output tensor with the same iterationID, and then
the parameters are unlocked. The set_weiдht () API in TensorFlow

uses the updated parameters for propagation. The hierarchical

synchronization is executed asynchronously across all processes

periodically. We leave the frequency tuning as our future work.

7 EVALUATION SETUP
7.1 Testbed Setup
We use a local cluster to evaluate the performance of the proposed

RNAmodel and implementedmechanism. Table 2 lists the hardware

congurations of the machines in the cluster. These machines are

connectedwith EDR Inniband. All nodes in this cluster run Ubuntu

Server 16.04 with MPI 4.0.1, Python 3.7, CUDA 10.1, cuDNN 7.6.0,

gcc 8.1.0, g++ 8.1.0, TensorFlow 2.1.
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Table 2: The hardware conguration of the physical cluster.

Processor GPU Model Num.

Intel 3.2GHz Xeon E5-2667 v3 2 × Nvidia Tesla K80 GPUs 4

Intel 2.60GHz Xeon Silver 4112 8 × NVIDIA GTX-1080Ti 2

Intel 3.2GHz Xeon Bronze 3104 2 × Nvidia GTX-2080Ti 4

As for the dynamic system heterogeneity, we follow the exper-

iment setting as Hop [40] to inject delays to simulate the system

heterogeneity. Each worker is slowed down randomly in each iter-

ation, where n is the number of workers.

7.2 Deep learning models and datasets
To evaluate the performance of RNA and compare it with other

works, we train three kinds of neural network models on real

datasets, including image classication, machine translation, and

video processing.

7.2.1 image classification. ResNet50 is a convolutional neural net-
work that is 50 layers deep used for image classication. We train

ResNet50 [23] model over ImageNet dataset [48], which contains

1,281,167 images to be classied into 1,000 classes. The model con-

tains 25,559,081 parameters. Momentum optimizer is used with

momentum = 0.9 andweiдht_decay = 5∗10−5. The initial learning

rate is 0.125 and decays to its 0.1× on epochs 30, 60, 80. The batch

size is 128.

VGG16 [50] is a communication-intensive network with thirteen

convolution layers of a 3×3 lter with a stride 1. It is a pretty large

network, and it has more than 138 million parameters. We train

VGG16 on dataset CIFAR-10 [30], whose evaluation setup is batch

size: 128, learning rate: 0.1, momentum: 0.9, weight decay: 10
−4
.

7.2.2 machine translation. Transformers [57] are developed to

solve the problem of neural machine translation, which transforms

an input sequence to an output sequence. We train Transformer on

WMT17 dataset [19], which is an English to German translation

dataset. The initial learning rate is set to be 2.0. The model has

61,362,176 trainable parameters. While training the model, we use

the varying input length. The samples in the training dataset typi-

cally consist of sentences in various lengths. Thus the computation

overhead varies with the length of the input and output sentences,

leading to unbalance training time.

7.2.3 video processing. RNN [41] is a class of articial neural net-

works where connections between nodes form a directed graph

along a temporal sequence. LSTM is a kind of recurrent neural

networks that are intimately related to input sequences and lists.

We train a single, 4096-wide LSTM layer, followed by a 1024 Dense

layer, with some dropout in between on UCF101 [52]. The model

has 34,663,525 parameters. UCF101 has 13,320 videos from 101 ac-

tion categories, which gives the largest diversity in terms of actions

and with the presence of large variations in camera motion, object

appearance, etc. We also use the varying input length to train the

model, which is linearly associated with the length of videos. The

input batch size is 128.
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Figure 6: Training speedup by RNA compared to Horovod,
eager-SGD, and AD-PSGD. "M" represents the mixed hetero-
geneity. "H"means that RNA is conguredwith hierarchical
synchronization.

7.3 Approaches and Performance Metrics
We compare the performance of RNA with three other synchro-

nization models: Horovod [49], AD-PSGD [37], and eager-SGD [35].

Horovod is selected as the state-of-the-art baseline, which signif-

icantly outperforms many other implementations of All-Reduce.

To achieve better performance, NCCL is congured to achieve bet-

ter AllReduce speed. The Tensor Fusion is also enabled for better

network utilization. Tensor Fusion can reduce the overhead when

performing AllReduce operations on gradients by avoiding frequent

initialization. AD-PSGD is implemented in TensorFlow by randomly

selecting communication neighbors. It uses grpc to communicate

parameters between nodes. eager-SGD proposes solo and majority

collective communication to implement partial AllReduce. Since in

a heterogeneous environment, it happens that few processes are

always faster than the others. The solo collective communication

may negatively impact the convergence because of the staled up-

date from slower processes. So we only implement the majority

collective communication as the baseline.

We use the time it takes for the model to achieve the target loss

as the metric of performance. We also measure the number of itera-

tions and averaged per-iteration time to analyze the eect of our

optimizations. We further use the validation dataset to validate the

accuracy of the obtained models. As for Transformers, we conduct

xed-time experiments to compare the throughput of a dierent

solution.

8 EXPERIMENTAL EVALUATION
8.1 Training speedup and convergence
We evaluate the training speed of ResNet50, VGG16, and LSTMwith

dierent system congurations. Because ResNet50 and VGG16 are

balanced workloads after being preprocessed, we introduce system

delay randomly, which ranges from 0 to 50ms, on each process.

To evaluate the performance of the hierarchical synchronization

mechanism, we simulate a cluster with mixed heterogeneity by di-

viding the machines into two groups, A and B. For group B, higher

system delay is injected, which ranges from 50 to 100ms randomly.

Based on the design principle of hierarchical synchronization, two

ring communication graphs are formed, and one central PS is cre-

ated to coordinate the parameter synchronization. We train these

three models on corresponding datasets. The goal of training is to
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Table 3: The nal training accuracy for dierent neural net-
works. ResNet and VGG represent ResNet50 and VGG16, re-
spectively.

approach

neural networks

ResNet ResNet(H) VGG VGG(H) LSTM

Horovod 78% 79% 93.4% 93.2% 88.2%

eager-SGD 76.2% 75.8% 92.8% 92.2% 87.5%

AD-PSGD 70.8% 68% 86.8% 87.6% 78.8%

RNA 78.2% 77.8% 92.6% 92.4% 87.8%

minimize the loss value. We use Keras EarlyStopping [56] to check

whether the loss is no longer decreasing at the end of every epoch.

The patience is set to ten, i.e., the training process is terminated if

the loss cannot be decreased within ten iterations.

From Figure 6, it can be learned that RNA outperforms eager-

SGD for ResNet50, VGG16, and LSTM. Compared with the state-of-

the-art Horovod, RNA can achieve training speedup for ResNet50,

VGG16, and LSTM by 1.7×, 1.4×, and 1.6×. The performance im-

provement demonstrates that the randomized per-process approach

can mitigate the impact of dynamic heterogeneity probabilistically.

Specically, when training ResNet50 in a cluster with a higher

degree of heterogeneity, the training speedup brought by eager-

SGD and RNA with hierarchical synchronization are decreased,

which are from 1.3× to 1.1× and from 1.7× to 1.5×, respectively.

However, the RNA with hierarchical synchronization shows stable

performance improvement, which is 1.8× and 1.4× for ResNet50

and VGG16, respectively. It demonstrates the probabilistic approach

cannot handle the deterministic slowdown, i.e., group B’s machines

are slower than A by 50ms on average at each iteration. The hierar-

chical synchronization mechanism can avoid mixed heterogeneity.

It can also be noticed that the performance of AD-PSGD is higher

than RNA for VGG-16. It is because VGG16 has a larger neural

network, which makes the communication a dominating factor.

Specically, RNA requires extra memory copy between CPU and

GPU. However, from Table 3, we can see that AD-PSGD achieves

the lowest accuracy compared with the other three approaches

when the training is terminated. Horovod, eager-SGD, and RNA

can achieve high accuracy.

Specically, the convergence curve for LSTM using dierent

approaches is shown in Figure 7. Though AD-PSGD reaches the

stopping criteria for training earlier than Horovod, i.e., shorter

execution time, it sacrices the model accuracy. Compared with

Horovod, RNA lowers the training time from 8,200 ms to 5200ms,

leading to nearly 1.6× speedup. Eager-SGD can achieve similar

accuracy with Horovod and RNA, but its throughput is lower than

RNA, resulting in longer execution time. Overall, RNA can both

speed up the training process and guarantee good model accuracy.

8.2 Validation on models
We further test the accuracy of the obtained ResNet50, VGG16

and LSTM models, which are summarized in Table 4. From the

number of executed iterations, we can see that the state-of-the-art

Horovod is bottlenecked by the throughput because of dynamic

system heterogeneity or inherent imbalance. Although AD-PSGD

requires fewer iterations to converge to minimize the loss value, the
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Figure 7: Convergence curve in terms of loss value and train-
ing accuracy for LSTM. Each point is collected at the end of
one epoch.

Table 4: The validation accuracy for dierent neural net-
works.

models approaches # of iterations top-1 acc. top-5 acc.

ResNet50

Horovod 42200 76.2% 93.2%

eager-SGD 49800 74.8 91.2%

AD-PSGD 38800 68.8 88.6%

RNA 52400 75.9% 92.6%

VGG16

Horovod 1080 92.5% -

eager-SGD 1360 91.8% -

AD-PSGD 880 82.8% -

RNA 1420 92.2% -

LSTM

Horovod 8120 68.2% 94.8%

eager-SGD 9600 66.8% 94.6%

AD-PSGD 7800 60.6% 90.1%

RNA 9660 66.5% 95.2%

execution time of each iteration is severely aected by the synchro-

nization overhead. And AD-PSGD achieves the lowest validation

accuracy compared with other approaches. For LSTM and ResNet50,

RNA takes advantage of asynchronous execution to allow more

iteration in a xed duration, leading to higher throughput. RNA can

achieve higher training throughput than Eager-SGD because it can

eciently reduce the response time at each iteration. Both eager-

SGD and RNA can obtain higher model accuracy than AD-PSGD.

From these results, we can learn that RNA has signicant con-

vergence speed improvement compared with the state-of-the-art

approach, AllReduce in Horovod. While compared with AD-PSGD,

higher model accuracy is guaranteed.

8.3 Throughput comparison
To evaluate the throughput, we train Transformers in both homo-

geneous and heterogeneous clusters. The homogeneous cluster has

two nodes congured with eight NVIDIA GeForce GTX-1080Ti

for each. In the homogeneous environment, the high variance of

the input sentence length incurs imbalance training time among
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Figure 8: Per-Iteration Speedup and Overall Speedup com-
parison among Horovod, Eager-SGD, AD-PSGD and RNA in
both homogeneous and heterogeneous environment.

processes. In the heterogeneous environment, we inject the ad-

ditional dynamic slowdown to evaluate heterogeneity tolerance.

In the experiment, we set the batch size to 4,096 tokens. The per-

iteration speedup, and the overall speedup is shown in Figure 8.

Horovod is selected as the baseline since it strictly follows the BSP

model. The per-iteration time is the training time required for each

iteration, which is averaged from one epoch. The overall speedup

is the convergence time over the baseline. From Figure 8(a), we

can see that RNA achieve the highest per-iteration speedup over

Horovod, which is nearly 2.6× in a homogeneous environment,

while eager-SGD and AD-PSGD can accomplish that by 1.9× and

1.4×, respectively. The reduction in the per iteration time results in

less waiting time between iterations.More tokens have been pro-

cessed by RNA within a xed time duration compared with other

approaches, leading to higher throughput. To obtain the same loss

value of 2.0, RNA achieves 2.2× the overall speedup over Horovod

on the execution time, as is illustrated in Figure 8(b), while eager-

SGD and AD-PSGD achieve that by 1.4× and 1.2×, respectively. In

a heterogeneous environment, as is shown in Figure 8(c) and 8(d),

eager-SGD suers from the random slowdown, whose per-iteration

speedup drops from 1.9× to 1.3×. However, both AD-PSGD and

RNA can achieve stable speedup, which is 1.6× and 2.3×, respec-

tively, in terms of overall speedup. Combined with these two results,

we can learn that RNA achieves a better balance between statistical

eciency and system eciency. It requires more iterations while

ignoring the staled contribution to gain signicant speedup in per

iteration time, leading to overall execution time speedup.

We further evaluate the scalability of RNAwith other approaches

on Transformers by varying the number of GPU processes. From

Figure 9 shows that RNA and eager-SGD almost achieve the highest

and similar throughput on a 4-processes scale. With the increased

number of processes, both the AD-PSGD and RNA achieves higher
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throughput than Horovod and eager-SGD. When the number of

processes is increased, RNA performs better scalability than Eager-

SGD and Horovod. AD-PSGD also shows superior performance in

terms of scalability. In particular, we notice when the number of

processes is increased to 32, AD-PSGD is has a little higher through-

put than RNA. Because Transformer networks mostly consist of

tensor contractions implemented as batched matrix products. As

a result, Transformer requires more straightforward computation

compared with the computation-intensive Convolution and causes

dominated communication overhead due to the signicant number

of parameters, leaving less space for optimization. However, com-

pared with AD-PSGD, we notice that RNA can reach 24 on BLEU

score while AD-PSGD can only obtain 22. This result shows that

RNA can ensure higher accuracy comparedwithAD-PSGD. In terms

of throughput, RAN can achieve better scalability compared with

eager-SGD. These results show that the relaxed synchronization in

RNA does not sacrice high accuracy compared to state-of-the-art

solutions while ensuing the training throughput.

8.4 Sensitivity analysis
The number of choices to approximate the behavior of the system

could aect performance [42]. We design a microbenchmark to

evaluate the performance of the per-process sampling approach.

The simulated cluster has 100 nodes. We simulate the unbalanced

workload by injecting tasks to each process with randomized skew-

ness, which ranges from 10 to 50ms. At each iteration, we randomly
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Table 5: The transmission cost in RNA.

DL application ResNet50 LSTM VGG16 Transformers

Extra cost 6.2% 3.8% 23% 18%

select a number of processes as the probes. When the fastest one

among probes nishes execution, the computation proceeds to the

next round. We run the synthetic workload for 100 iterations and

obtain the response time for each iteration, which is shown in the

Figure 10. The gure demonstrates that using one more oversam-

pling probe could signicantly improve performance compared to

selecting initiator randomly, which reduces median response time

by more than 2.4× compared to random sampling from 28ms to

12ms on average. Furthermore, the deviation of execution time for

each iteration is smaller than using random selection, i.e., choice of

one. The gure also demonstrates an interesting observation: a low

probe ratio negatively impacts performance because it does not

oversample enough to nd a faster process. However, additional

oversampling does not improve performance due to increased mes-

saging. As illustrated in Section 5, the convergence rate trade-o

more synchronization costs to gain overall execution time speedup.

With this observation, to reduce the response time at each iteration

eciently, we use a probe ratio of 2 to implement our per-sampling

approach.

8.5 System overhead
Compared with Horovod, to achieve asynchronous training, RNA

rstly aggregates obtained gradients locally by writing the data

from GPU to CPU memory. After the AllReduce operation, RNA

needs to read the reduced results from CPU memory, which incurs

extra transmission cost (i.e., overhead) because of the memory copy.

Table 5 measures the transmission cost percentage in the execution

time of three jobs using RNA. The transmission time for ResNet50,

LSTM, VGG16 and Transformers accounts for the execution for

one iteration for 6.2%, 3.8%, 23%, and 18%, respectively. We can see

that the overhead for VGG16 and Transformers is more signicant

than that for the other jobs since these two have a larger number

of parameters. Overall, the cost is much smaller compared to the

performance improvement by RNA. But the transmission overhead

is bottlenecked by the bandwidth of PCIe between CPU and GPU.

And this communication overhead does not increase if we scale out

the cluster because the transmission is executed locally. Overall,

the additional transfer overhead is much smaller compared to the

performance improvement brought by RNA. For neural networks

with a larger model, we can optimize the performance by layer-wise

overlapping between GPU and CPU.

9 RELATEDWORK
A variety of solutions [63] have been proposed to overcome the

straggler problem for distributed deep learning. Redundant execu-

tion [2][66] is commonly used to mitigate stragglers in the tradi-

tional data analytics platform. Themain idea is to launch speculative

execution on multiple machines. Recently, backup worker [6] is

proposed in distributed learning systems to overcome the strag-

glers problem. However, the redundant execution introduces non-

negligible overhead from data communication. Firstly, in ring All-

Reduce, a more restrictive communication pattern makes it impos-

sible to implement these techniques, e.g., backup works. Secondly,

the redundant execution is not fruitful to handle the randomized

system heterogeneity and inherent load imbalance.

Adaptive tuning strategy solves stragglers bymatching the amounts

of task loads to their respective capacities in a heterogeneous envi-

ronment. FlexMap [8] launches elastic map tasks with dynamic in-

put block sizes, and PIKACHU [20] is proposed to adjust the reduce

task size elastically based on the system heterogeneity. However,

all these works only focus on the traditional BSP scheme. Advanced

approaches are proposed for deep learning systems. For example,

R2SP [5] is proposed to tune the batch size adaptively and Flex-

Para [60] partitions parameters to provision adaptive tasks to match

the varying capacity. However, these works do not fundamentally

solve the problem because the severe and continuous slowdown

of some workers will eventually drag down other workers and the

whole training. In the operating system, work-stealing is a classi-

cal method to achieve load balancing among workers, improving

system-wide performance. The concept of work-stealing is to move

workloads from slower workers to the faster ones, e.g., FlexRR [22].

Skewtune [31] is proposed to mitigate skewness in the data ana-

lytics platform, which waits for idle workers to steal work from

those tasks with the greatest remaining processing time. Consid-

ering the large overhead from communication, these approaches

cannot be directly applied to deep learning systems. Recently, re-

laxed synchronization is proposed to exhibit the strict need for

synchronization on the BSP model. SSP [12][61] enables processes

to execute the training independently and allows fast workers to

advance a bounded number of iterations ahead of slow workers.

A-BSP [59] is proposed to aggressively synchronize parameters by

applying the partial updates from slower workers. But all these

approaches target on the centralized PS architecture.

Taking advantage of the robustness of deep learning training

process, AD-PSGD [37] is rst to explore the fundamental algo-

rithm level solution to allow asynchronous synchronization in

a decentralized setting. In AD-PSGD, gradient updates are only

sent to limited (random) neighborhoods using gossip algorithms.

However, it requires extra overhead to perform atomic parameter

averaging. Otherwise, it will suer from deadlocks issues due to

scheduling conicts. Furthermore, the implementation is limited

to a certain type of AllReduce graph. Similar approaches such as

Cutout [15] and Dropout [4] propose random errors and omissions

into the training process to improve generalization of network

models. Hop [40] introduces a generic solution to overcome het-

erogeneity for decentralized training protocol, which proposes a

queue-based synchronization mechanism to enable bounded stale-

ness. However, maintaining a bunch of queues and tokens for each

worker in a large cluster incurs communication overhead and delay.

Furthermore, Hop accumulates gradients for faster workers. Due

to the bounded iteration gap, some workers’ severe and continuous

slowdown will eventually drag down other workers and the entire

training.

Prague [39] and Eager-SGD [35] are more related to our ap-

proach, which proposes a new communication primitive to allow
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partial workers to synchronize parameters quickly. Specically,

Prague oers both static and dynamic group scheduling to con-

struct a new group randomly during the runtime to avoid conicts.

However, this approach is based on system proling information,

whose decision might not be optimal for dynamic neural networks

such as RNN and LSTM. Moreover, it requires a careful group sched-

uling at each iteration to avoid the synchronization conicts. It also

introduces additional system overhead to form the communication

graph, which harms the training throughput. Eager-SGD proposes

solo and majority collective communication to implement an asyn-

chronous decentralized SGD. Solo collective communication could

sacrice model accuracy because it advances the synchronization

aggressively. As is illustrated in the evaluation results, the majority

cannot ensure the performance because it does not oversample

enough to avoid the slower processes. Furthermore, in a heteroge-

neous environment, eager-SGD still suers from a deterministic

slowdown, which cannot be avoided by the randomized approach.

SGP [3] adopts a gossip algorithm called PushSum for approxi-

mate distributed averaging, which allows for much more loosely

coupled communications to achieve ecient distributed training

in a high-latency or high-variability environment. SGP does not

use global collective communication primitives. Alternatively, each

process only communicates with its neighbors. However, all the

processes need to nish the current iteration before going to the

next. SGP is robust to communication-constrained settings. Com-

pared to SGP, our work is robust to load imbalance. RNA can relax

the strict synchronization to tolerate computation straggler because

of the feature of asynchrony. Both eager-SGD and RNA only re-

quire O (1) step to globally propagate the lo-cal update. However,

in SGP, each process propagates its local update using O (loдP )
steps. Zero/DeepSpeed [46] presents a set of optimizations to re-

duce memory redundancy in distributed training, by partitioning

parameter weights, activations, and optimizer state separately, and

it can scale models to 170 billion parameters. Compared with Zero,

RNA is straggler tolerant and is orthogonal to their approach.

10 CONCLUSION
In this paper, we discuss and tackle the challenging straggler prob-

lem caused by imbalanced training load in the Ring All-Reduce

protocol. The imbalance can be from the dynamic system hetero-

geneity itself or inherent workload. We propose a new synchro-

nization mechanism, RNA, to implement a straggler-tolerant and

BSP-compatible AllReduce to improve distributed deep learning

performance. The key idea is that RNA allows partial processes to

synchronize their gradients without waiting for slower ones. RNA

can address performance issues in AllReduce using probabilistic ap-

proach, including the straggler problem caused by dynamic system

heterogeneity and asymmetric workloads incurred by imbalance

input data. We have performed comprehensive evaluations with

various DL applications in dierent environments while providing

convergence proof for the asynchronous gradient descent algorithm.

Our experiment results on three representative deep learning ap-

plications, including image classication, machine translation, and

video processing, show the proposed solution can achieve 1.8×

speedup over the state-of-the-art implementation, i.e., Horovod,

and 1.3× speedup over AD-PSGD.
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